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ABSTRACT
We construct examples of finitely presented groups G with the property that, if
G, is the intersection of the lower central series of G, then {G,G,] # G,,.

The transfinite lower central series { G, } of a group G is defined, by transfinite
induction, for every ordinal o (less than some fixed ordinal \) as follows:

1) G =6,

2) G4, = [G,,G] for any ordinal «,

(3) G, = Ng<qa Gg, if a is a limit ordinal.

(If H,H’ are subgroups of G, then [H,H'] is the subgroup generated by all
commutators [A,h'], h € H, h' € H'.) It is clear that this series eventually stabi-
lizes, i.e., G, = G, if « is large enough (also A). The smallest such o will be re-
ferred to as the length of G. If G, = {1}, G is transfinitely nilpotent.

It is a classical theorem of Malcev [M] that, for any ordinal «, there exists a
group of length «. Furthermore, it is shown by Hall and Hartley {HH] (see also
[H] and [H1]) that, if « is countable, there is a finitely-generated group of length
a. It is suggestive that all the examples constructed in these papers, when o > w
(w is the first infinite ordinal), are non-finitely-presented. Thus it is natural to ask
what lengths are possible for finitely-presented groups. In particular, is it possi-
ble for a finitely-presented group to have length greater than »? Note that any non-
abelian free group has length » [Ma] and it is known [H] that any extension of a
finitely-generated abelian group by a cyclic group has length <w.

It is the main purpose of this note to prove:

THEOREM 1. There exists a finitely-presented group G of length >w, i.e. G, #
Gw+1 .
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The proof will make use of a new localization process for groups ([L1], [V]),
used in [L], [Le] to study concordance of links. This is a substitute for the HZ-
localization of Bousfield ([B]) and is better suited to the study of objects of finite
type (also see [FOS]).

Theorem 1 will follow from the existence of a group whose localization is not
“achieved” in the nilpotent completion (see Theorem 2).

In the final section we will produce an explicit group G satisfying Theorem 1,
whose construction is suggested by Theorem 2, and give a direct proof (without
using localization) that G, # G ;.

1. We recall some definitions from [L], [L1]. Let G be a group and § a system
of equations over G:

(8) Xi = Wi(X1,. .., %), l<i=n.

w; = w;(X1,...,X,) is an element of G * F (free product), where F is the free
group on the indeterminants x, . . .,X,. A solution of 8 is a retraction p: G * F—
G such that p(w;) = p(x;), 1 =i < n. We usually write the solution, more sugges-
tively, as “x; = p(w;).” We say 8 is contractible if p’ (w;) = 1 for all i, where
p’: G * F— Fis the retraction defined by p’ (G) = 1. G is E-closed (called algebrai-
cally closed in [L]) if every contractible system of equations over G has a unique
solution in G.

It is proved in [L] that, for every group G, there is an essentially unique ¢ : G—
G satisfying:

(i) G is E-closed.

(ii) If ¢ : G — A, where A is E-closed, then there is a unique §: G — A such that
8op =y. Gis called the algebraic closure of G. We refer the reader to [L], [L1]
for properties and examples.

Suppose ¢ : G— A is as in (ii). Then we can define the algebraic closure of G (or
) in A to be 8(G). As our main example of this let A = G, the nilpotent comple-
tion of G (G = lim, . G/G,) and ¥ the canonical homomorphism. It is proved
in [L2] that G is E-closed. We denote by G the algebraic closure of G in G. We will
see below that Ker{G — G} = (G),. It is an important question in link theory
whether F = F, or, at least, length F = w, where Fis any free group (see question
4 in section § of this paper). We shall prove:

THEOREM 2. There exist finitely presented groups G such that length G>o.
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The examples we exhibit are the following family for n = 2:
T(n) = {t,X),.. XXX, =x% (1 <i<j<n), txt' =x7' (1 <isn).
We shall also show that Theorem 2 implies Theorem 1.

2. We will have use for a tower construction, modeled after a similar construc-
tion in [B], first suggested by Kent Orr, which produces the transfinite lower cen-
tral series of G. We construct, for any group G, an inverse system {G(a);
¢o5:G(a) = G(B), if a > B; ¢,: G— G(a)} where the indexing set is all ordinals
(less than a given ordinal). Set G(1) =1 and G(2) = H,(G). For o > 2 proceed
by induction and assume {G(8), ¢, b3, } is defined forall y < B <. If a =8 +
1, then ¢.5: G(a) — G(PB) is defined to be the central extension defined by

H,G(B8) - Cok{pg+: H,G —» H,G(B))

and ¢, : G— G(o) is the canonical lift of ¢g (see [B]). If « is a limit ordinal, then
G (a) is defined to be the algebraic closure of G in limg, G(8). We rely on the
facts that a central extension of an E-closed group is E-closed, and the inverse limit
of a system of E-closed groups is E-closed (see [L]) to insure that G («) is well-de-
fined and E-closed. Thus, by the definition of G, ¢, lifts uniquely to ¢,: G —
G(a).

PROPOSITION 1. ¢, is onto and Kernel ¢, = (G),.

ReMARK. The tower construction in [B] is identical to ours, except that G(«a)
is the HZ-closure of limg., G(f), if « is a limit ordinal. According to [B], G{«a)
is the o-th lower central series quotient of the HZ-localization of G (which is al-
ways transfinitely nilpotent, unlike the algebraic closure).

Proor. Recall from [B] the tower construction of the lower central series quo-
tients of G. G[1] = G, Gla + 1] - G[a] is the central extension defined by
H,G[a] - Cok{H,G - H,G[«l}, and G[a] = image of G in limg., G[B] if «
is a limit ordinal. Then G[a] = G/G, in a natural way. We apply this tower con-
struction to G and show that there is an isomorphism of inverse systems G[a] =
G(a), by transfinite induction. If & = 8 + 1 and G[8] = G(8), then G[«] and
G (a) are the central extension of G(f) defined by

H,G[B] - cok{H,G - H,G[B]} and H,G(B) - cok{H,G - H,G(B8)},

respectively. Since H,G — H, G is onto, these are the same. If « is a limit ordinal,
the inductive hypothesis implies limg., GIB) ~ limg., G(B). Then Gla] is the
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image of G, while G(«) is the algebraic closure of the image of G in limg, G(B).
But these are identical by definition.
This completes the proof.

COROLLARY. For any group G, Kernel{ G - G} = (G),,. (Recall G is the alge-
braic closure of G in its nilpotent completion G.)

3. We show now that Theorem 2 implies Theorem 1. Suppose G is a finitely-
presented group with length G > w. It follows from the Stallings 5-term exact se-
quence [S] that this is equivalent to H,(G) — H,(G/(G),), not onto. Now, ac-
cording to [L], G is a direct limit of finitely-presented groups:

G=GO_’GI_>__'_’Gr_)Gr+l_,.__

s

where G — G" is 2-connected, for all r, i.e., H,(G) - H,(G") is bijective for g =
1 and surjective for ¢ = 2. By [S], G - (G") is bijective and so we obtain a se-
quence of inclusions:

G/G,c---< G/(G"), /G /(G™*), c---c G/(G),.

Clearly G/(G), =\, G’/(G"), and so Hy(G/(G),) =lim,_o, H,(G'/(G"),). We
can now conclude that H,(G") - H,(G'/(G"),) is not onto for some r, for
otherwise

H,(G) = lim H>(G") - lim Hy,(G"/(G"),)) = H,(G/G),)

would be onto. For such G” we then conclude by [S] that length G” > w.

4. We now prove Theorem 2 by exhibiting a finitely-presented group G such that
H,(G) - H,(G) is not onto. Since H,(G) - H,(G) is onto and G = G/(G),,
this will show that H,(G) — HZ(G/ (G)w) is not onto and so length G>o.

Let G be the semi-direct product of a finitely-generated abelian group A4 by an
infinite cyclic group C, i.e. 4 is a normal subgroup of G and G/4 = C. G is then
completely specified by the conjugating action of C on A. If 1 € G is a generator
of C, we define tat ™' = « ! for all « € A.

Let Z, denote the additive group of 2-adic integers and Z,, (S Z,) the rational
2-adic integers. We now define 4, =4 ® Z, and A5y = A ® Z5), interpreting A
additively.

ProposITIoN 2. G and G are the semi-direct products of A, and A @)» respec-
tively, by C, with tat ™' = a ! for all « € A, or Ay,. The inclusion G € G is in-
duced by the natural inclusion A ) € A,.
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Proor. It is straightforward to calculate that the lower central series of G is
given by:

G,=29"4 forg=2

using additive notation in A. Thus the result for G follows immediately. We now
have to identify G in G.

A typical element of G occurs as a solution of a contractible system of equa-
tions $:

(8) xi=w,-(x1,...,xn); l<i=<n.
Let us formally set x; = y;¢%, where { ;] are new indeterminants and e; are integer
variables. We identify ¢ with the generator of C and regard y; € A4,; so § is an

equation in G. Making this substitution in § and using the relations ty;# ' = yi!
we rewrite

wi(xla L ,X,,) = vi(yl’- . ,yn)tai
where v; € A * F(y,,...,¥,). Since 8 is contractible and conjugating by ¢ does
not change the exponent of y;mod 2, it follows that the image of v; under the pro-
jection A * F(y,,...,¥s) = F(»1,...,y,) is a monomial in which the exponent

sum of each y; is even.
This substitution has converted 8 into a new system of equations over G:

8" Vit = v;(¥1,. ., ¥)t% 1<isn

Since 8’ is solvable in G, we conclude that a; = e; and we are left with the follow-
ing system over A:

(8") Yi=vi(Y1,.. s Vn)

which is solvable in 4,. If we change to additive notation, 8” can be rewritten as:
n
(8”’) yi= 2 a;iY; + o, l<i<n
Jj=1

where g;; € Z, a; € A. Our observation above about v; is equivalent to the coudi-
tion that each a;; is even. Since square integral matrices with odd determinant are
invertible over Z,,, we see that the solutions {y;} of 8” lic in A(y).

Conversely, suppose 8 € 4, and r any integer. We may write mg8 = « € A for
some odd integer m = 2k + 1. Then the single contractible equation

x=a(xt ")kt )k

has the solution x = 8¢" (multiplicatively).
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This completes the proof of Proposition 2.

5. We now compute H,G — H,G. Since G is an extension of 4 by an infinite
cyclic group we have the usual exact sequence

oo Hy(A) =5 H,(A) = H,(G) > H,_(A) == g-1(A4) =
where ¢, is induced by conjugation by ¢. If 4 is a free abelian group, then
H,(A) = AA, the g-th exterior power. In our case conjugation by # is inversion
and so ¢, = (—1)7 on H,(A). In particular we conclude that H,(G) = A2A; sim-
ilarly H,(G) = A%A 3. Furthermore, H,(G) - H,(G) coincides with the natural
homomorphism A24 — A2A4,,. If rank A = n, then A%A (resp. A%A ) is a direct
sum of (;) copies of Z (resp. Z(y). Thus if n =1, Hy(G) - H,(G) is onto, but
if n > 1 it is not onto and we obtain the desired examples.

This completes the proof of Theorem 2.

6. We now produce an explicit group G satisfying Theorem 1. Let
H={txy:xy=yx, txt ' =x"1, pt7 1 =y}

be one of the groups satisfying Theorem 2. Define G from H by adding a gener-
ator z and relation z = x[¢,z]. Let ¢ : H— G be the inclusion and ¥ : G —» H the
epimorphism defined by:

vy =t Yy =y Y@ =x P =x.

Note that ¢ is 2-connected since G is a non-singular extension in the sense of
Howie [Ho]. Thus by [S] ¢ induces an isomorphism of nilpotent completions
H- G. 1t is also true that y - ¢ induces an isomorphism of nilpotent completions
H - H (even though y - ¢ is not 2-connected). This can be checked directly from
Proposition 2. Thus we conclude that ¢ induces an isomorphism G — H. Since ¢
is onto, it follows that G/G, — H/H,, (induced by ) is an isomorphism.

Now consider the diagram:

Hy(G) » Hy(G/G,)) = Go/Gy1 =0
v 154 !
Hy(H) - Hy(H/H,) > H,/H 4, > 0

where the rows are part of the 5-term exact sequence of [S] arising from the short
exact sequence 1 - G,—- G- G/G,—~ 1,1 > H,—» H— H/H,— 1, and the verti-
cal maps are induced by y. Now H, = 1 (see Proposition 2) and we see easily that
¥’ has cokernel of order 3. In fact, H,(H) is infinite cyclic generated by x A y
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and, since ¢ is 2-connected, H,(G) is generated by x A y. Therefore the image of
Y’ is generated by x> Ay = (x A y)>.

Now a simple diagram chase shows that G,/G,, is the group of order 3—
generated by [z,y] —since ¥” is an isomorphism, [z,y] = 1 in G/G,, and
v lz,y] = [xp].

7. We conclude with some questions/problems:

(1) Find a finitely-presented group G with length greater than w, which is trans-
finitely nilpotent.

(2) Is there a finitely-presented group of any prescribed countable length (and
transfinitely nilpotent)?

(3) If G is finitely-generated of length «, is G, the union of invisible subgroups?
Note that G, is the maximal subgroup K of C satisfying { K, G] = K. For the in-
finitely generated perfect group

P={x;,X,...,:% = [Xix1, Xiy2], i 2 1}

we have P = P, but P contains no invisible subgroups. The finitely-presented
group:

G={xyst:txt ' =x[x,y]l =sxs!, tyt7 ! = y[y,txt '] = sys~'}

has length w, but G, is normally generated by {[s'~/,x], i > 0} and is not invis-
ible. However, G, is the union of the invisible subgroups

K(n) = normal closure of {[s’t™,x], i < n]}.

(4) Is there a finitely-presented group G with length >w, H.(G;Z/p) = 0 for all
p? If not, then F has length = w, where F is the free group of the same rank m as
H,(G), and this implies H,(F) = 0. This is important in the study of classical
links. If H,(F) = 0, then a theorem of X. S. Lin applies to give a complete realiz-
ability criterion for Milnor’s ji-invariants (see [L3]) for links of multiplicity m.
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