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ABSTRACT 

We construct  examples of  finitely presented groups G with the property that,  if 
G~ is the intersection of  the lower central series of  G, then [G,G~] ~ G~. 

The transfinite lower central series I G~ I of  a group G is defined, by transfinite 

induction, for every ordinal o~ (less than some fixed ordinal k) as follows: 

(1) G~ = G, 

(2) G~+I = [G~,G] for any ordinal ~, 

(3) G~ = O~<~ G~, if ot is a limit ordinal. 

(If H , H '  are subgroups of G, then [H,H']  is the subgroup generated by all 

commutators [h, h ' ] ,  h E H, h '  E H ' . )  It is clear that this series eventually stabi- 

lizes, i.e., G~ = G~+l if a is large enough (also k).  The smallest such ct will be re- 

ferred to as the length of G. If  G,~ = I 1 }, G is transfinitely nilpotent. 

It is a classical theorem of Malcev [M] that, for any ordinal a ,  there exists a 

group of length a.  Furthermore, it is shown by Hall and Hartley [HH] (see also 

[H] and [HI]) that, if ~ is countable, there is a finitely-generated group of length 

~. It is suggestive that all the examples constructed in these papers, when ct > co 

(o~ is the first infinite ordinal), are non-finitely-presented. Thus it is natural to ask 

what lengths are possible for finitely-presented groups. In particular, is it possi- 

ble for a finitely-presented group to have length greater than o~? Note that any non- 

abelian free group has length co [Ma] and it is known [H] that any extension of a 

finitely-generated abelian group by a cyclic group has length _<co. 

It is the main purpose of this note to prove: 

THEOREM 1. There exists a finitely-presented group G of  length >w, i.e. G~ 

a~+ 1 • 
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The proof will make use of a new localization process for groups ([L1], [V]), 

used in [L], [Le] to study concordance of links. This is a substitute for the HZ- 

localization of Bousfield ([B]) and is better suited to the study of objects of finite 

type (also see [FOS]). 

Theorem 1 will follow from the existence of a group whose localization is not 

"achieved" in the nilpotent completion (see Theorem 2). 

In the final section we will produce an explicit group G satisfying Theorem 1, 

whose construction is suggested by Theorem 2, and give a direct proof (without 

using localization) that G,o :~ G~+l. 

1. We recall some definitions from ILl, [LI]. Let G be a group and $ a system 

o f  equations over G: 

(8) xi = wi(xl . . . . .  x , ) ,  1 < i -< n. 

w~ = wi(xl . . . . .  xn) is an element of  G * F (free product), where F is the free 

group on the indeterminants x~ . . . . .  xn. A solution of $ is a retraction p : G * F ~  

G such that p (wi) = p (x~), 1 <_ i _< n. We usually write the solution, more sugges- 

tively, as "xi = p(w~)." We say 8 is contractible if p'(wi) = 1 for all i, where 

p' : G * F ~  F is the retraction defined by p' (G) = 1. G is E-closed (called algebrai- 

cally closed in [L]) if every contractible system of equations over G has a unique 

solution in G. 

It is proved in [L] that, for every group G, there is an essentially unique ~ : G 

0 satisfying: 

(i) 0 is E-closed. 

(ii) If  ff : G --, A, where A is E-closed, then there is a unique 0 : G --, A such that 

0 o ¢ = ~b. 0 is called the algebraic closure of G. We refer the reader to [L], [L1] 

for properties and examples. 

Suppose ~b : G ~ A is as in (ii). Then we can define the algebraic closure o f  G (or 

~) in A to be 0 (0 ) .  As our main example of this let A = 0 ,  the nilpotent comple- 

tion of G ((~ = l i m q ~  G/Gq) and ~b the canonical homomorphism. It is proved 

in [L2] that t~ is E-closed. We denote by t~ the algebraic closure of G in t~. We will 

see below that Ker[ 0- - ,  G] = ( 0 L .  It is an important question in link theory 

whether P = F, or, at least, length P = o~, where F is any free group (see question 

4 in section 5 of this paper). We shall prove: 

THEOREM 2. There exist finitely presented groups G such that length 0 > c0. 
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The examples we exhibit are the following family for n _> 2: 

r ( n )  = [t, x l , . . . , x , : x i x j  = xixi (1 <_ i < j <_ n), txit -~ = x71 (1 <- i <- n)l .  

We shall also show that Theorem 2 implies Theorem 1. 

2. We will have use for a tower construction, modeled after a similar construc- 

tion in [B], first suggested by Kent Orr, which produces the transfinite lower cen- 

tral series of  (~. We construct, for any group G, an inverse system {G(u) ;  

~o~B : G(ct) ~ G(3) ,  if a > 3; ~o~ : G ~ G(o~)] where the indexing set is all ordinals 

(less than a given ordinal). Set G(1) = 1 and G(2) = H1 (G). For ot > 2 proceed 

by induction and assume [G(3),4~e,O~,} is defined for all ~ < 3 < a.  If  or = 3 + 

1, then th~ : G(ot) --, G(3)  is defined to be the central extension defined by 

H2G(3)  ~ C o k [ ~ *  :H2G ~ H2G(3)} 

and ~o~ : G ---, G(c~) is the canonical lift of  ~ (see [B]). If  ot is a limit ordinal, then 

G ( a )  is defined to be the algebraic closure of G in lima< ~ G(3) .  We rely on the 

facts that a central extension of an E-closed group is E-closed, and the inverse limit 

of a system of E-closed groups is E-closed (see [L]) to insure that G(o~) is well-de- 

fined and E-closed. Thus, by the definition of (~, ~% lifts uniquely to ~b~ : (~ -~ 

G(oO. 

PRovosi:rmN 1. ~ is onto and Kernel ~ = (G)~. 

RE~_ARK. The tower construction in [B] is identical to ours, except that G(ot) 

is the HZ-closure of  lim~<~ G(3) ,  if o~ is a limit ordinal. According to [B], G(ot) 

is the a-th lower central series quotient of the HZ-localization of G (which is al- 

ways transfinitely nilpotent, unlike the algebraic closure). 

PROOF. Recall from [B] the tower construction of the lower central series quo- 

tients of G. G[1] = G, G[ot + 1] ~ G[ot] is the central extension defined by 

H2G[ct] - ,  Cok{H2G ~ H2G[a] ] ,  and G[ot] = image of G in lim~<~ G[3] if 

is a limit ordinal. Then G[a ]  ~ G/G~ in a natural way. We apply this tower con- 

struction to t~ and show that there is an isomorphism of inverse systems G[a ]  

G(a) ,  by transfinite induction. If  o~ =/3 + 1 and G[3] = G(/3), then t~[ol] and 

G ( a )  are the central extension of G(/3) defined by 

H2G[/3] ~ c o k [ H 2 G ~ H 2 G [ 3 ] }  and H2G(/~) ~ c o k I H 2 G ~ H 2 G ( 3 ) } ,  

respectively. Since H2G -~ H2G is onto, these are the same. If ot is a limit ordinal, 

the inductive hypothesis implies lim:~<~ G[3] ~- lim:~<~ G(/3). Then (~[a] is the 
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image of 0 ,  while G(o0 is the algebraic closure of the image of G in lim~<~ G(fl). 

But these are identical by definition. 

This completes the proof. 

COROLLARY. For any group G, Kernel[ 0 ~ (~] = ( 0 L .  (Recall G is the alge- 

braic closure o f  G in its nilpotent completion G. ) 

3. We show now that Theorem 2 implies Theorem 1. Suppose G is a finitely- 

presented group with length 0 > ~o. It follows from the Stallings 5-term exact se- 

quence [S] that this is equivalent to H2(O) - H2(0/ (0) ,~) ,  not onto. Now, ac- 

cording to [L], 0 is a direct limit of  finitely-presented groups: 

G = GO--* G 1 ~ . . . ~  Gr--~G r+l - * . . . ,  

where G-* G r is 2-connected, for all r, i.e., Hq(G) -* Hq(G ~) is bijective for q = 

1 and surjective for q = 2. By [S], G ~ (G r) is bijective and so we obtain a se- 

quence of  inclusions: 

G/Go c_. . .  c_ Gr/(Gr)~ c_/Gr+~/(G~+~ L c_ . . .  c_ ~ / ( ~ ) ~ .  

Clearly 0 / ( 0 ) ~  = I.)r G~/(G~L and so H2(0/(O),~) = limr.o~ HE(G~/(GrL).  We 

can now conclude that H2(G r) --, H2(Gr / (G~L)  is not onto for some r, for 

otherwise 

H2(G) -~- lim Hz(G r) --. lim HE(G~/(G~L) = H 2 ( G / G L )  
r r 

would be onto. For such G r we then conclude by [S] that length G ~ > ~0. 

4. We now prove Theorem 2 by exhibiting a finitely-presented group G such that 

HE(G) ~ HE(t~) is not onto. Since HE(G) --, H2(O) is onto and (~ = 0/((~),~, 

this will show that HE(G) ~ HE(O/(G),0) is not onto and so length t~ > o~. 

Let G be the semi-direct product of  a finitely-generated abelian group A by an 

infinite cyclic group C, i.e. A is a normal subgroup of  G and G/A ~ C. G is then 

completely specified by the conjugating action of C on A. If  t E G is a generator 

of  C, we define tort -l = ot-I for all t~ E A. 

Let Z2 denote the additive group of 2-adic integers and Z(2) (c- Z2) the rational 

2-adic integers. We now define A2 = A ® Z2 and A (2) = A ® Zt2), interpreting A 

additively. 

PROPOSITION 2. G and G are the semi-direct products o f  A 2 and A (2), respec- 

tively, by C, with tut -1 = el-1 for  all ~ E A 2 or A (2). The inclusion G c_ 0 is in- 

duced by the natural inclusion A (2) C A2" 
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PROOF. It is straightforward to calculate that the lower central series of  G is 

given by: 

Gq = 2 q - l A  for q __ 2 

using additive notation in A. Thus the result for (~ follows immediately. We now 

have to identify (~ in (~. 

A typical element of  ¢~ occurs as a solution of  a contractible system of  equa- 

tions $: 

($) xi = w i ( x l  . . . . .  xn);  1 < i < n. 

Let us formally set xi = Yi t% where [Yi] are new indeterminants and ei are integer 

variables. We identify t with the generator of  C and regard Yi E A2; so $ is an 

equation in ¢~. Making this substitution in 8 and using the relations tyi t - I  = y[-i 

we rewrite 

Wi(X 1 . . . . .  Xn) = u i ( y  I . . . . .  Y n ) t  ai 

where vi E A * F ( y ~  . . . . .  Yn) .  Since $ is contractible and conjugating by t does 

not change the exponent of  y; mod 2, it follows that the image of  v; under the pro- 

jection A * F ( y l  . . . . .  yn)  -" F ( y l  . . . . .  Yn) is a monomial in which the exponent 

sum of  each yy is even. 

This substitution has converted $ into a new system of  equations over G: 

( $ ' )  y i t  e~ = v i ( y l  . . . . .  Yn)tai; 1 <_ i < n. 

Since $' is solvable in G, we conclude that ai = ei and we are left with the follow- 

ing system over A: 

( $ " )  Yi = Vi (Yl . . . . .  Yn) 

which is solvable in A2. If  we change to additive notation, 8" can be rewritten as: 

( $ " )  Yi = ~ a i j y j  "-I- oli; 1 <_ i < n 
j=l  

where a U E Z, ai E A. Our observation above about vi is equivalent to the co,di-  

tion that each a 0 is even. Since square integral matrices with odd determinant are 

invertible over Zt2), we see that the solutions [Yi] of  8~' lie in A t2). 

Conversely, suppose/~ E A ~2~ and r any integer. We may write m/~ = a E A for 

some odd integer m = 2k + 1. Then the single contractible equation 

X = ot ( x t - r ) - k t ( x t - r ) k t  r-1 

has the solution x = [Jt r (multiplicatively). 
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This completes the proof of  Proposition 2. 

5. We now compute HE G ~ / / 2  G. Since G is an extension of A by an infinite 

cyclic group we have the usual exact sequence 

• . . ~ H q ( A )  t.-1) H q ( A ) ~ H q ( G ) _ ~ H q _ ~ ( A )  t.-l) H q _ ~ ( A )  

where t.  is induced by conjugation by t. If  A is a f r e e  abelian group, then 

H q ( A )  ~. A q A ,  the q-th exterior power. In our case conjugation by t is inversion 

and so t. = ( - 1 )  q on U q ( A ) .  In particular we conclude that HE(G) = AZA; sim- 

ilarly HE (G) ~ AZA (2). Furthermore,/-/2 (G) -~ HE (G) coincides with the natural 

homomorphism AEA -,  A:A (2). If  rank A = n, then A:A (resp. A2A (2)) is a direct 

sum of (~) copies of Z (resp. Z(:)). Thus if n = 1, H : ( G ) - ,  HE(G)is  onto, but 

if n > 1 it is not onto and we obtain the desired examples. 

This completes the proof of Theorem 2. 

6. We now produce an explicit group G satisfying Theorem 1. Let 

H =  { t , x , y  : x y  = y x ,  t x t  -1 = x - l ,  t y t  -1 = y - l }  

be one of the groups satisfying Theorem 2. Define G from H by adding a gener- 

ator z and relation z = x [ t , z ] .  Let 4) : H ~  G be the inclusion and ~b : G ~ H the 

epimorphism defined by: 

J / ( t )  = t, ~b(y) = y ,  ~b(z)=x,  J / ( x )  = x 3. 

Note that q~ is 2-connected since G is a non-singular extension in the sense of 

Howie [Ho]. Thus by [S] ~b induces an isomorphism of nilpotent completions 

H ~  G. It is also true that ~b. ~b induces an isomorphism of nilpotent completions 

H--, H (even though ~b. ~b is not 2-connected). This can be checked directly from 

Proposition 2. Thus we conclude that ~b induces an isomorphism d ~ H. Since ~b 

is onto, it follows that G/Go, ~ H / H o ,  (induced by ~b) is an isomorphism. 

Now consider the diagram: 

HE(G) ~ H 2 (  G/Go,)  ~ G,~/Go,+~ --, 0 

H2(H)  ~ H 2 ( H / H o , )  --, H,  J H ,  o+I ~ 0 

where the rows are part of the 5-term exact sequence of [S] arising from the short 

exact sequence 1 --, G,~ --, G ---, G/G,~ ---, 1, 1 ---, H,., ---, H - - .  H /H ,~  ---, 1, and the verti- 

cal maps are induced by ~b. Now Ho, = 1 (see Proposition 2) and we see easily that 

~b' has cokernel of order 3. In fact, H2(H)  is infinite cyclic generated by x ^ y 
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and, since ~ is 2-connected, H2 (G) is generated by x ^ y. Therefore the image of 

~b' is generated by x 3 ̂  y = (x n y)3. 

NOW a simple diagram chase shows that Go,/Go,+l is the group of  order 3 -  

generated by [ z , y ] - s i n c e  ~" is an isomorphism, [z ,y]  = 1 in G / G ~ ,  and 

~" [z,y] = Ix, y]. 

7. We conclude with some questions/problems: 

(1) Find a finitely-presented group G with length greater than w, which is trans- 

finitely nilpotent. 

(2) Is there a finitely-presented group of  any prescribed countable length (and 

transfinitely nilpotent)? 

(3) If G is finitely-generated of  length a,  is G~ the union of  invisible subgroups? 

Note that G~ is the maximal subgroup K of  C satisfying [K, G] = K. For the in- 

finitely generated perfect group 

P =  { x l , x 2  . . . . .  :x i  = [x i+l ,x i+2],  i >  I I 

we have P = P~ but P contains no invisible subgroups. The finitely-presented 

group: 

G = { x , y , s , t :  t x t  - l  = x [ x , y ]  = sx s  -1,  t y t  -1 = y [ y ,  t x t  -1 ] = sy s  -1 } 

has length w, but Go, is normally generated by { [ s i t - i , x ] ,  i > 0] and is not invis- 

ible. However, Go, is the union of  the invisible subgroups 

K ( n )  = normal closure of  {[sit-i,x], i <- n } .  

(4) Is there a finitely-presented group G with length >w, H 2 ( G ; Z / p )  = 0 for all 

p ?  If  not, then aChas length = w, where F i s  the free group of  the same rank m as 

H ~ ( G ) ,  and this implies H2(F)  = 0. This is important in the study of  classical 

links. If H2 (F) = 0, then a theorem of  X. S. Lin applies to give a complete realiz- 

ability criterion for Milnor's £-invariants (see [L3]) for links of  multiplicity m .  
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